
Objections to Making Robots
Easier to Program

It's pretty simple to make a case for why robots should be easier to program, and that there should be a standard way

of doing it. The main counterargument comes from robot brands themselves, or people that already know how to

program a robot. Even some educational institutions object to the idea, which is most strange since they typically

only have one brand of robot in their labs.

For the group of people that know how to program a robot, it’s not uncommon that when we present our software

they search for reasons why our approach is wrong. There are six major objections we hear, and these are our

responses.

Industrial and collaborative robots are too hard to
program, and even if you learn how to program one, your
skills are not transferable to other robots. Our software,
Forge/OS, makes robots much easier to program, and
programming skills are transferable since our software is
not tied to a single brand of robot.

Especially with integrators, they are

implementing robots that their

customers request. If a new robot is

requested, they’ll have to invest in the

training to learn how to work with that

interface, or risk losing the project.

The logic also breaks down since

technology is not static. There is not a

single example of a technology that has

not evolved in computing. If the

statement is that we are experts in

programming X, and we are not willing

to program in Y, then they will become

irrelevant if a robot vendor changes

their interface.

01
We are experts
in robot programming
This is perhaps the most common

objection we hear, especially after

seeing our robot-agnostic,

touchscreen-based, easy-to-use,

flowchart programming interface. What

will remain to be true after they learn to

use our software, is that they are still

experts in robot programming, and

likely in many other skills required to

automate an industrial task.

That doesn’t look easy, does it?However,

there were a good number of experts in

assembler language in the 60s and 70s

writing programs that enabled

businesses to use the first computers to

automate their businesses.

MOVX 23,l

ADD 223,l

SD sd,j
We already know
<insert robot programming
language>

02

There were a lot of assembler language

programmers in the early 60s as well. Most of you

have never even heard of assembler language!

Here is an example of an assembler program

doing some logic for a business application:

The accelerated pace at which businesses could adopt

computers was in a large part thanks to Grace Hopper, who

developed the Common Business Oriented Language, or

COBOL, to make programming easier. COBOL resulted in an

absolute explosion in the number of programmers, since it

was so much easier to use than assembler. Not only was it

easier to learn, it was easier to develop programs and

maintain them. That last point about maintaining programs

is critical to understanding the value of a simpler

programming language.

And now fast forward to today, there is a no-code

programming language called Bubble that is enabling over

400,000 people to develop mobile and web applications,

without writing any code! Does it matter that none of them

are experts in assembler?

https://en.wikipedia.org/wiki/Grace_Hopper
https://bubble.io

You do not
support
<insert
feature here>

3
We get a lot of questions about
our current release:

As of today, we can either do some of these tasks,
integrate with the robot's built-in feature to do the task,
or integrate with software that performs these functions.
The important point is not whether we can do it today, but
do we have the capability to add these features? And,
along the way, make them easier and more functional
than how they are done today. In addition, we are
providing an open architecture where we are not the ones
having to implement every single feature, but enabling a
large ecosystem of providers who are experts in complex
tasks such as bin picking and path optimization. These
are areas of not only active research, but fierce
competition in the space, and our goal is just to make it
easier for developers to iterate and improve on their
features and make them accessible to the widest set of
end customers as possible.

· Can you do welding?

· Can you pick from a conveyor?

· Can you calculate the optimal

 path for picking from a bin?

However, this is not what has happened

in the software programming world.

Programmers are in demand more than

ever because the number of

applications being developed has

exploded. In robots, the dramatic

change in the landscape will come from

cheaper robots that have better

integrated hardware options such as

those needed for safety. This means

there will be much more demand for

programmers since there will be so

many more robots. Even if robots are

easier to program, there will be more

opportunities for integrators to provide

value add services to their clients.

We make $200 an hour
programming, you’ll take our jobs

04

This comment most commonly comes from integrators

as they have ongoing contractual relationships with

customers to provide programming services once a

work cell is implemented. Every time there is a

changeover there is an opportunity for some work by

the integrator to reprogram the robot. With a simple

programming interface, customers can make those

changes on their own, which could affect the revenue

stream of the integrator.

It’s a dirty little secret in the industry that

robots require constant touch ups to

their programs to account for robot drift,

changes in their environment caused by

accidents (e.g. a forklift bumping a

fixture) or an accident on a line (a part

colliding with the robot). When amortized

over even just a few years, easier-to-use

software has a very large ROI based on

its impact reducing ongoing

maintenance costs.

But it doesn’t just stop with

maintenance. Imagine the possibilities if

you can swap in a different robot, one

that is newer and cheaper, and be able to

make only minor updates to the program.

Your software costs too
much, we do not need
anything extra to
program a robot

Our software is an add-on to the overall

cost of the work cell. However, the

software is very low cost compared to

the cost of upkeep of the program of a

robot in a work cell.

05

We've already
standardized on
<insert robot
OEM brand here>

6 The argument goes: we have already chosen a particular
robot brand, and we’ve got too much invested to use
something else. In addition, we are told that they get
incentives to continue to stay with that brand. This is
contrary to nearly any service or product sold today. Isn’t
it more logical that a competing brand would give a
discount to win your business? Doesn’t blind loyalty lead
to higher prices and less competition over time? It’s fair to
say that industrial robots have seen very little innovation
in the past 30 years. The biggest advance has been with
collaborative robotics (also known as “cobots”). Initially led
by Rethink Robotics, Universal Robots picked up where
they left off after bankruptcy, to become the undisputed
market leader for cobots. However, Universal Robots is
facing intense competition with dozens of startups and
established robot OEMs now manufacturing collaborative
robot arms.

These new entrants are only exacerbating the
fragmentation facing the industry, with every new cobot
OEM bringing their own proprietary programming
interface. This makes the need for a standardized, easy-
to-use programming interface all the more critical.
Standardization drives the next wave of innovation.
Google’s Android platform did so for the nascent
smartphone industry, triggering a massive wave of
innovation in mobile apps. Microsoft’s Windows operating
system did so for the budding PC industry, triggering a
massive wave of innovation in computer software.
Robotics is overdue for a common operating platform
that reduces fragmentation, reduces the programming
barrier, and unlocks the innovation that manufacturing
needs.

Conclusion

At READY Robotics, our software, Forge/OS,
makes industrial and collaborative robots vastly
easier to program.

In addition, Forge/OS provides a standard
interface to robots, with an open platform
architecture, where partners can build plugins
that work with any robot.

https://www.ready-robotics.com/products/forge-os

Contact

Author

Ben Gibbs, CEO and Co-Founder
ben@ready-robotics.com

Ben Gibbs, CEO and Co-Founder
 ben@ready-robotics.com

Thought Leadership Team

Production Team

Kel Guerin
CIO and Co-Founder

Josh Davis
PhD in Robotics, VP of Robotics

Jake Huckaby
PhD in Robotics, VP of Strategic Partnerships

Erik Bjornard
VP of Marketing

Kirk Higgins
Kirk Higgins

For more resources and thought leading content and case studies on
automation:

ready-robotics.com/resources
1080 STEELWOOD RD. COLUMBUS, OH 43212
(833) 732-3967

Copyright © 2021 READY Robotics, All rights reserved.
For press inquiries, contact
erik.bjornard@ready-robotics.com

Linkedn • Facebook • Twitter
Instagram • YouTube

https://www.linkedin.com/company/ready-robotics/
https://www.facebook.com/ReadyRobotics/
https://twitter.com/readyrobotics
https://www.instagram.com/readyrobotics/
https://www.youtube.com/channel/UCOUlHG_OMWAumLEN2DMCTww/videos
https://www.ready-robotics.com/resources

